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Abstract Nanojoins are parts of large carbon molecules joining several nanotubes
with the same or different parameters and chemical and electrical properties. It is
known that Euler’s formula implies that such nanojoins must contain faces that are
not hexagons if at least three tubes are joined. As the atoms in a nanojoin are carbon
atoms preferring hexagonal rings, it is normally assumed that apart fromhexagons only
pentagons and heptagons occur. In this paper we will give necessary and sufficient
conditions for the existence of nanojoins joining nanotubes with given parameters and
given numbers of pentagons and heptagons.

Keywords Fullerene · Nanotube · Nanojoin

1 Introduction

In 1991 Iijima [12] reported the preparation of graphitic carbon needle-like tubes
with diameter from 4 to 30nm and up to 1µm long. These needles were made up
of coaxial carbon tubes, carbon nanotubes, in which the carbon atoms were arranged
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in hexagons. Carbon nanotubes have many potential applications and large quantities
can be produced by various means [11,14].

Guo [10] reports on methods for the generation of nanojunctions between nan-
otubes. That is, there are various methods for joining nanotubes with the same or
different diameters and properties. It is nanojoins, the structures that join the nan-
otubes together, that are of interest in this paper.

Iijima et al. [13] discuss the growth of nanostructures in which there are some
pentagonal or heptagonal rings of carbon, and the effects of these polygons on the
shape of these nanostructures.

Nanotubes and nanojoins can be represented as graphs in which carbon atoms are
represented by vertices. Graph theory can be used to gain information about such
structures and to enumerate them. For example, see [3–5]. This paper is concerned
with graphs which represent nanojoins.

As the vertices in our graphs correspond to carbon atoms, non-hexagonal faces are
especially relevant as they represent a deviation from the preferred ring size causing
stress and leading to energetically less favourable structures. Furthermore, the tubes
always contain many hexagons and the boundary between a tube and a nanojoin is of
a purely artificial nature so that the question “How many hexagons must be present
in a join?” does not make sense, while, no matter how the boundary between the join
and the tube is defined, pentagons and heptagons must always be considered as part
of the join.

In this paper we will give a full answer to the question of whether, for a given set
of tubes with given parameters and given numbers p of pentagons and s of heptagons,
a nanojoin with p pentagons, s heptagons and some number of hexagons exists that
can join the given tubes.

2 Terminology

All graphs considered in this paper are connected plane graphs, that is, graphs embed-
ded in the plane with a well defined cyclic order of edges around each vertex.

Definition 1 The degree sequence of a face with edges v0v1, v1v2, . . . , vnv0 in clock-
wise order around the boundary (seen from inside the face) is the cyclic series
deg v0, deg v1, . . . , deg vn .

In the literature the term nanotube is used for two kinds of structure. In [7] Dres-
selhaus describes it as “consisting of a planar honeycomb network of carbon atoms on
a graphite sheet one atom thick and rolled up into a cylinder”. The other structure is a
tube shaped fullerene, that is, a plane graph with all vertices of degree 3 and all faces
pentagons or hexagons in which the (necessarily) 12 pentagons come in two groups of
6 pentagons each, together with some hexagons close to them forming the nanocaps,
connected by a finite part of a nanotube in the sense of Dresselhaus. The term halftube
denotes one part of a nanotube (in the sense of Dresselhaus) that has been cut so as
to produce two infinite parts, possibly capped at the cut with a nanocap. In this article
tube and halftube will always refer to the non-capped versions.

Take an infinite plane graph in which all vertices have degree 3 and where all
faces are hexagons except for a finite number of pentagons and heptagons. If there

123



2080 J Math Chem (2015) 53:2078–2094

exists a finite 2-connected induced subgraph so that after its removal the components
that remain are k ≥ 2 halftubes, this substructure is called a nanojoin (joining these
halftubes).

The structure of a tube or halftube can be described by 2 parameters (see [9]),
often denoted as l,m. A nanotube with parameters l,m has a closed path so that
when cut along that path a face with degree sequence (3, 2)l , (2, 3)m is created.
Such paths are used to describe the border between a cap and the tube of a nan-
otube fullerene and also between the nanojoin and the tubes that are joined by
it.

So in a nanojoin, seen as an isolated structure and not as a substructure, there are
two kinds of faces: faces that are also faces in the whole, infinite, structure and special
faces that come from cutting the tubes. This motivates the following definitions:

Definition 2 • For each graph G there is a (possibly empty) set S(G) of faces.
Faces f ∈ S(G) are called special faces. If f ∈ S(G) has degree sequence
(3, 2)l , (2, 3)m for some (l > 0, m ≥ 0, l + m ≥ 2) we call f a special t-face.

• A patch is a (finite) graph G with all faces f /∈ S(G) pent- hex- or heptagons and
with all vertices of degree 2 or 3. The vertices with degree 2 are in the boundary
of a special face. When there is only one special face, that face may be called the
outer face.

• For a special face S write t = t (S) and d = d(S) for the number of vertices of
degree 2, respectively 3, in S. For a patch P with only one special face S, write
t (P) for t (S) and d(P) for d(S).

• Ahalftube is an infinite graphwith one special t-face f and all other faces hexagons,
in which all vertices not in the special face have degree 3. If the degree sequence
of f is (3, 2)l , (2, 3)m for some l and m, we say that the halftube has parameters
(l,m).

• A nanojoin is a patch in which all k ≥ 2 special faces are special t-faces.

Assume that we have a special face fG with boundary v1v2, v2v3, . . . , v2(l+m)v1
giving the degree sequence (3, 2)l , (2, 3)m and a halftube with special face fH

formed by the edges w1w2, w2w3, . . . , w2(l+m)w1 giving the same degree sequence.
Looking at the boundary of fH in anticlockwise order and starting with w2l , that
is, w2lw2l−1, . . . , w1w2(l+m), . . . w2l+1w2l , we get a sequence of degrees that is
(2, 3)l , (3, 2)m . Identifying v1 with w2l , v2 with w2l−1, . . . , and finally v2(l+m) with
w2l+1 the identified vertices vi and w j all have the property that deg vi + degw j =
5. As the two edges in the boundaries of the special faces are the same after
identification, the result is that all identified vertices have degree 3 and the two
special faces have been deleted. This operation models the gluing of a halftube
to the special face of a nanojoin with the same parameters. Applying such a pro-
cedure to each special t-face of a nanojoin shows that the structures defined as
nanojoins can in fact be obtained by the cutting operation informally described
before Definition 2 and that a nanojoin can be used to join together halftubes
with the same or different parameters corresponding to the special faces. We will
use the same kind of operation to identify boundaries of special faces of nano-
joins.
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3 Preliminary results

Proposition 3.1 If a nanojoin joining k halftubes has p pentagons and s heptagons,
then s = p + 6(k − 2). In particular, a nanojoin joining 2 halftubes has the same
number of pentagons as heptagons.

Proof Consider a nanojoin with k special faces, h hexagons, p pentagons and s
heptagons and with the degree sequences of the special faces (3, 2)li , (2, 3)mi for
i = 1, . . . , k. Counting the numbers of edges (or equivalently vertices), face by face,
we count each edge twice and, except for the vertices of degree 2 in the boundary of
the special faces, each vertex 3 times. In a special face with parameters (l,m) there
are l + m vertices of degree 2. This gives us the following formulas for the number of
faces |F |, edges |E | and vertices |V |:

|F | = h + p + s + k

2|E | = 6h + 5p + 7s + 2
k∑

i=1

(li + mi )

3|V | = 6h + 5p + 7s + 3
k∑

i=1

(li + mi ) = 2|E | +
k∑

i=1

(li + mi ).

Inserting these into Euler’s Formula, 6|V | − 6|E | + 6|F | = 12, one obtains s =
p + 6(k − 2). ��
Lemma 3.2 Consider a patch P with one special face S, p pentagons and s hep-
tagons. Let t = t (S) and d = d(S). Then p − s = 6 − (t − d).

Proof Let h be the number of hexagons in the patch. The number of faces |F |, edges
|E | and vertices |V | are given by |F | = p + h + s + 1, 2|E | = 5p + 6h + 7s + t + d
and 3|V | = 2|E | + t .

Using Euler’s Formula we obtain p − s = 6 − (t − d). ��
In order to be able to refer to it, we give the following Lemma, but without the easy

proof.

Lemma 3.3 Let the path v1v2, v2v3, . . . , vk−1vk be part of a special t-face and s
be the corresponding sequence of degrees. Let t (s) and d(s) be the number of twos,
respectively threes, in s. Then t (s) − d(s) ≤ 2.

4 Nanojoins joining two halftubes

In this section we will give necessary and sufficient conditions for the existence of
nanojoins containing p pentagons and s heptagons that join two halftubes with para-
meters (a, b) and (c, d). While the existence proofs will all be given in this section, a
non-existence proof for one case will be postponed until the end of the article.
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Theorem 4.1 There exist nanojoins with p pentagons and s heptagons joining two
halftubes with parameters (a, b) and (c, d) if and only if a + b ≥ 2, c + d ≥ 2 and

• p = s = 0 and (a, b) = (c, d);
• or p = s = 1 and (a, b) �= (c, d);
• or p = s ≥ 2.

The conditions a +b ≥ 2 and c+d ≥ 2 are necessary for the existence of halftubes
(otherwise there would be double edges). For a + b ≥ 2, c + d ≥ 2 the existence of
halftubes can easily be seen using the construction described by Dresselhaus [8].

It has been known for many years that nanojoins with p = s = 0 join halftubes
with (a, b) = (c, d). This just rephrases the well definedness of the parameters for
nanotubes.

We will need some lemmas/basic facts before giving the proof of the theorem.

Lemma 4.2 If (a, b) �= (c, d) and a + b ≥ 2, c + d ≥ 2, there exists a nanojoin with
p = s = 1 joining two halftubes with parameters (a, b) and (c, d).

Proof We may assume that a + b ≥ c + d. Start with a ring of hexagons having
boundary sequence (a, b) on both sides. Add a ring consisting of one pentagon and
a + b − 1 hexagons to this nanojoin. If b �= 0 place the pentagon where there are
two adjacent vertices of degree 2. The nanojoin has become a patch with one special
face a special t-face with parameters (a, b) and a second special face having degree
sequence 3, (3, 2)a+b−1. With each ring of hexagons added to the boundary of the
second special face, we get a new boundary where the exponent is 1 smaller, so by
adding rings of hexagons we can obtain a patch whose outer face has degree sequence
3, (3, 2)c+d−1.

Give label 0 to the face with two adjacent vertices of degree 3 in the outer ring, then
label the faces in the outer ring consecutively in clockwise order seen from the special
face. Replace the face labeled c by a heptagon. Since (c, d) �= (a, b), this face is not
the pentagon, no matter whether hexagon rings have been added or not. The result is
a special face with degree sequence (c, d). See Fig. 1 for an example. ��

Using this result, we can easily prove the third part in Theorem 4.1, which we will
rephrase in the following lemma:

(3, 3)

(a) (b) (c)

Fig. 1 a Add a ring with one pentagon to a (3, 3) nanocap, b add a ring of hexagons, c replace a hexagon
by a heptagon to obtain a special face with degree sequence (3, 2)2(2, 3)3
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Lemma 4.3 For each n ≥ 2 and parameters (a, b), (c, d) with a + b ≥ 2, c + d ≥ 2
there exist nanojoins with n pentagons and n heptagons joining two halftubes with
parameters (a, b), respectively (c, d).

Proof For n = 2 choose parameters (e, f ) �= (a, b), (c, d). By Lemma 4.2 there is a
nanojoin for (a, b) and (e, f ) with 1 pentagon and 1 heptagon. There is also a nano-
join for (e, f ) and (c, d) with 1 pentagon and 1 heptagon. Identifying the nanojoins
along the (e, f ) boundary gives a nanojoin for (a, b) and (c, d) with 2 pentagons and
2 heptagons.

Applying the same technique inductively, nanojoins with n > 2 pentagons and
heptagons can be constructed. ��

To complete the proof of Theorem 4.1 it remains to be shown that for p = s = 1
there is no nanojoin that can join two halftubes with the same parameters. From
the chemical point of view this is possibly the least interesting case as for the same
parameters an energetically much better join with only hexagons is possible. From the
mathematical point of view, it is of course interesting to also decide this last case. As
we will see, this case is by far the most difficult, so we postpone it to the last section.

5 Nanojoins joining three or more halftubes

Theorem 5.1 There exist nanojoins with p pentagons and s heptagons joining k ≥ 3
halftubes with parameters (li ,mi ), li + mi ≥ 2, 1 ≤ i ≤ k if and only if s =
6(k − 2) + p.

Proposition 3.1 implies that s = 6(k − 2) + p is a necessary condition. What
remains to be shown is that it is sufficient. Again we will prove the result with the help
of some lemmas. We begin with joins joining 3 halftubes.

Lemma 5.2 Consider three parameters (l1,m1), (l2,m2) and (l3,m3) with li +
mi ≥ 2, 1 ≤ i ≤ 3. There exists a nanojoin for three halftubes with parameters
(l1,m1), (l2,m2) and (l3,m3) with 6 heptagons and no pentagons.

Proof Let h be a hexagon in the hexagonal lattice and for i ≥ 0 define the patch Pi

as the subgraph induced by all hexagons at distance at most i from h (with distance
referring to the usual graph theoretic distance in the dual). The graphs P0 and P1 are
depicted in Fig. 2. Define a side of Pi to be a path in the (special) outer face with

Fig. 2 The graphs P0 and P1

P0 P1
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Fig. 3 Connecting a side of P
to a side of Q

P

Q

. . .

degree sequence (2, 3)i , 2. There are 6 sides, with 2i + 1 vertices each, and the union
of these 6 sets of vertices is the vertex set of the special face of Pi .

Let c = max{l1+m1, l2+m2, l3+m3, 6}, k = � 1
2c	−1 and let P and Q be copies

of Pk . Let S1, . . . , S6 be the sides of P in clockwise order and T1, . . . , T6 the sides of
Q in anticlockwise order. Connecting S1 with T1, S3 with T3 and S5 with T5 by adding
an edge between corresponding vertices of degree 2 (see Fig. 3) we obtain a patch with
3 special faces. The degree sequence of each special face is 3, (2, 3)k+1, 3, (2, 3)k+1.

Replacing, in each special face, one hexagon containing a boundary edge with two
vertices of degree 3 by a heptagon changes the degree sequence of the special face to
3, (2, 3)2k+3. Note that as k ≥ 2 this procedure in fact replaces 3 different hexagons.

Adding j rings of hexagons to the boundary of a special face yields a new special
face with degree sequence 3, (2, 3)2k+3− j . We successively add rings to special face
number i, 1 ≤ i ≤ 3, until the boundary has degree sequence 3, (2, 3)li +mi −1. Note
that we add at least one ring of hexagons for each special face. A hexagon can then be
replaced by a heptagon to insert a vertex of degree 2 in the correct position to obtain
(3, 2)li (2, 3)mi .

Having applied this method to each special face we have a nanojoin that joins 3
halftubes with parameters (l1,m1), (l2,m2) and (l3,m3). ��

Lemma 5.3 For k > 2 and parameters (l1,m1), . . . , (lk,mk), li + mi ≥ 2, 1 ≤ i ≤
k, there exist nanojoins with no pentagons and 6(k −2) heptagons joining k halftubes
with the given parameter sets.

Proof For k = 3 this is just Lemma 5.2. For k ≥ 4 the result can then
be proven by induction: assume k parameters (l1,m1), . . . , (lk,mk) are given.
By induction there exist two nanojoins where the special faces have parameters
(l1,m1), . . . , (lk−1,mk−1), respectively (lk−1,mk−1), (lk−1,mk−1), (lk,mk). Iden-
tifying these nanojoins along the boundary of a special face with parameters
(lk−1,mk−1), the resulting nanojoin has k special faces with the required parame-
ters and 6(k − 3) + 6 = 6(k − 2) heptagons. ��

There is one last step necessary to prove Theorem 5.1:

Lemma 5.4 For k > 2, p ≥ 0 and parameters (l1,m1), . . . , (lk,mk), li + mi ≥
2, 1 ≤ i ≤ k, there exist nanojoins with p pentagons and 6(k − 2) + p heptagons
joining k halftubes with the given parameter sets.

Proof For p = 0 this is just a reformulation of Lemma 5.3. By induction there
exists a nanojoin with p − 1 pentagons, 6(k − 2) + p − 1 heptagons and special
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faces with parameters (l1,m1), . . . , (lk + 1,mk + 1). By Lemma 4.2 there also exists
a nanojoin with 1 pentagon, 1 heptagon and 2 special faces with parameters (lk +
1,mk + 1), (lk,mk). Identifying these joins along the boundary of a special face with
parameters (lk + 1,mk + 1), a nanojoin with the required special faces, p pentagons
and 6(k − 2) + p heptagons is obtained. ��

6 The nonexistence of a nanojoin

The aim of this section is to prove that there is no nanojoin for two (l,m) nanotubes
which contains just 1 pentagon and 1 heptagon.

Definition 3 A symmetric 5–7 nanojoin is a nanojoin for two nanotubes with the same
parameters (l,m) containing exactly 1 pentagon and 1 heptagon.

If l �= 0 and m �= 0 we call the edge where both endpoints have degree 3 the
concave edge of the special face and the edge with two vertices of degree 2 the convex
edge. Note that a special face has a concave edge if and only if it has a convex one and
that it can have at most one edge of each type.

Lemma 6.1 In a symmetric 5–7 nanojoin the intersection of each non-special face f
with a special face S is connected.

Proof If S ∩ f has two or more components, we can remove the edges in S ∩ f . This
disconnects the nanojoin into (at least) two patches, one of which, say P , does not
contain the other special face. The boundary sequence of P is a subsequence s1 of S
plus a sequence 2, 3i , 2 for some i ≥ 0. By Lemma 3.3 we have that t (s1)−d(s1) ≤ 2,
with t (s1), d(s1) the numbers of twos, respectively threes, in s1. For P this implies
t (P) − d(P) ≤ 4 in contradiction to Lemma 3.2, which gives t (P) − d(P) ≥ 5. ��

A consequence of Lemma 6.1 is that a non-special face contains at most 2 vertices
of degree 2 of each special face in a symmetric 5–7 nanojoin.

Lemma 6.2 Let S be a special face of a symmetric 5–7 nanojoin. If two faces which
intersect S have a common edge, one of the vertices of that edge lies in S or both faces
share an edge with a pentagon at the convex edge of S.

Proof Assume that the faces f1 and f2 intersect S and have an edge in common with
each other which does not contain a vertex of S.

Remove the edges in f1 ∩ f2 and S ∩ ( f1 ∪ f2). This disconnects the nanojoin into
(at least) two patches, one of which, say P , does not contain the other special face. The
boundary sequence of P is a subsequence s1 of S plus a sequence 2, 3i , 2, 3 j , 2 for
some i, j ≥ 0. If one of i, j is larger than 0 we have t (P)−d(P) ≤ 4, in contradiction
to Lemma 3.2, so assume i = j = 0. This means that both edges of P ∩ S sharing a
vertex with f1, f2 belong to the same face f̄ in P and due to Lemma 6.1 must be all
of P . But if f̄ is a hexagon or heptagon, the vertices not in P ∩ ( f1 ∪ f2) yield 2, 2, 2,
respectively 2, 2, 2, 2 as a subsequence in the boundary of S, a contradiction, and if
f̄ is a pentagon, the vertices not in P ∩ ( f1 ∪ f2) yield 2, 2 as a subsequence—so the
pentagon is at the convex edge. ��
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The key idea of the proof is to use a result by Dress [6] that there is no local disorder
of the hexagonal lattice by 1 pentagon and 1 heptagon only. The mathematical basis
of this approach was worked out in detail in [2] and later published as a complete
classification result in [1].

An equivalent reformulation of this result is:

Theorem 6.3 [6] There is no patch (in the sense of Definition 2) with exactly 1 penta-
gon, 1 heptagon and 1 special face where the boundary of the special face describes
a simple closed path in the hexagonal plane.

We prove that a symmetric 5–7 nanojoin can be cut open in a way that the resulting
patch contradicts Theorem 6.3.

The properties of the path along which we want to cut the symmetric 5–7 nanojoin
are given in the following definition:

Definition 4 Let N be a symmetric 5–7 nanojoin with special faces with boundary
sequence (3, 2)l(2, 3)m .

If a path has a start- or end-point in a degree 3 vertex of a special face, we say
that it starts, respectively ends, in the l-part if the vertex is one of the vertices in the
subsequence (3, 2)l (and analogously for the m-part).

A legal cutpath p in N is a path starting in one special face and going to the other
with the following properties:

(i) Either l = 0 or m = 0 or the start- and end-vertex of p are in the same parts of
their boundaries, that is, both are in the l-part or both are in the m-part.

(ii) The path p has as many right turns as left turns.
(iii) Describing the path as a sequence d0, . . . , dk of right and left turns, for no subse-

quence d0, . . . , di , i ≤ k, is the excess of right turns over left turns (or the other
way around) more than 2. This implies that following the right and left turns in
the hexagonal lattice, p corresponds to a simple path.

Theorem 6.4 There is no symmetric 5–7 nanojoin with a legal cutpath.

Proof Assume that there is a symmetric 5–7 nanojoin for parameters (l,m) with a
legal cutpath.

Note that for l,m �= 0, the description of the boundary of the special face as a
sequence of right and left turns starting at a vertex of degree three depends on the
starting vertex. Nevertheless, for two sequences of right and left turns both obtained
by starting in the l-part, respectively m-part, following the sequence of right and left
turns starting at an edge in the hexagonal lattice will always give the same final edge
in the lattice. If one of the parameters is 0, we get the same sequence of right and left
turns independent of the starting point.

Cutting the resulting nanojoin along the legal cutpath we get a patch S with one
special face. The boundary of S forms a closed curve in the hexagonal plane. This can
be either proven by explicitly computing the coordinates of the start- and end-points
or by observing that connecting the endpoints of the four subpaths that constitute
the boundary (that is, the two paths coming from the special faces and the two paths
coming from the cut) yield a parallelogram.
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If this boundary path of S in the lattice is not simple, the properties of the four
subpaths (in particular, that they are simple) allow the addition of hexagons to S so
that the resulting patch has a simple boundary and therefore contradicts Theorem 6.3.

To see this, add patches from the hexagonal grid. If, for example, a part a of the
boundary intersects other parts of the boundary and is directed so that it has the nanojoin
on its right side, we can choose a simple path p in the hexagonal lattice connecting
the start edge with the end edge of a and otherwise not intersecting the closed curve.
This can be done so that the interior of the simple closed curve formed by p and a is
on the left side of a. Adding all hexagons inside the simple closed curve formed by p
and a, in the resulting patch the boundary cycle has fewer intersections. ��

Now we want to prove that any symmetric 5–7 nanojoin has a legal cutpath, and
therefore does not exist. If a non-special face contains a convex edge and a concave
edge, these must belong to different special faces and there is one edge connecting
the two special faces. This edge forms a legal cutpath, so that we have the following
lemma:

Lemma 6.5 There is no symmetric 5–7 nanojoin with a face carrying a convex and a
concave edge.

Definition 5 A thin path in a symmetric 5–7 nanojoin N is a maximal set of connected
faces that have edges in more than one special face. An interior face of a thin path is
a face that has 2 neighbours in the path.

We will first show that a thin path is in fact a path (in the dual) and not a cycle.

Lemma 6.6 A thin path in a symmetric 5–7 nanojoin corresponds to a path in the
dual.

Proof If a face in the thin path neighbours three or more other faces in the thin path,
one can easily construct a contradiction to the Jordan Curve Theorem, so each face
neighbours at most two other faces in the set and the corresponding subgraph in the
dual is a path or a cycle.

If the thin path is a cycle, then it would be the whole nanojoin and the heptagon
would be at a convex edge of the special face S (so l,m �= 0). The convex edge of the
other special face S′ would be at a hexagon, which would then also carry the concave
edge of S, contradicting Lemma 6.5. ��
Lemma 6.7 Suppose there is a pentagon or hexagon f at the end of a thin path of a
symmetric 5–7 nanojoin.

If f is a hexagon, it contains at least one concave edge of a special face. If f is a
pentagon, then it contains the concave edges of both special faces.

If f is the only element of the thin path, then f is a hexagon and contains the
concave edges of both special faces.

Proof The fact that f is an endpoint of a thin path implies that a neighbouring face
shares edges with only one special face and as special faces do not share a vertex, at
least 3 of the edges of f are not contained in a special face and at most 3 are contained
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in a special face. So at least one of the intersections of a hexagon with a special face
contains only one edge, which must have consecutive vertices of degree 3 at its ends.
For a pentagon, both intersections must have this property.

If f is the only element of the thin path, at least 4 of the edges of f are not contained
in a special face. So f cannot be a pentagon and, as we assume it is not a heptagon,
must be a hexagon and each intersection with a special face consists of a single edge.

��
Lemma 6.8 A thin path p in a symmetric5–7nanojoin N has the following properties:

(i) p does not contain a face with a convex edge.
(ii) p has a concave edge but does not contain two concave edges.
(iii) p does not contain interior faces that have a concave edge.
(iv) p does not contain a pentagon in the interior.
(v) p has a heptagon at one end.

Proof We will call an edge with endpoints in both special faces a crossing edge.

(i) Except for a heptagon in the interior of a thin path, each face with a convex edge
would also have the concave edge of the other face—contradicting Lemma 6.5.
If a heptagon in the interior of a thin path carries a convex edge, due to Lemma 6.7
the path has concave edges at both ends. In this case the crossing edge of the
heptagon that lies on the same side of the heptagon as the concave edge of the
special facewith the convex edge is a legal cutpath. This contradicts Theorem6.4.

(ii) If there is no concave edge, each face in p has at least two edges in each special
face. A face f at the end of p shares also at least 3 edges with neighbours in N .
So f must be a heptagon. As there is only one heptagon, this must be the only
element of p, but then f would share at least 4 edges with N—a contradiction.
If the thin path contains two different faces with a concave edge, due to (i) any
crossing edge between these two faces would be a legal cutpath, contradicting
Theorem 6.4. If the thin path contains only one face carrying both concave edges,
this face is a hexagonor heptagon and the only face in the thin path.Add a hexagon
to the concave edge of one of the special faces S, then continue along S in one
direction, adding hexagons until the edge before the convex edge of S. This is
illustrated in Fig. 4. This produces a symmetric 5–7 nanojoin with the same
parameters and a legal cutpath is obtained, contradicting Theorem 6.4.

Fig. 4 Adding faces to a join
with a thin path containing
exactly one hexagon and the
resulting legal cutpath

123



J Math Chem (2015) 53:2078–2094 2089

(iii) Due to Lemma 6.7 at least one of the endpoints would contain a concave edge
too, in contradiction to (ii).

(iv) A pentagon in the interior of a thin path would have a concave edge, contradicting
(iii).

(v) This follows directly from (ii) and Lemma 6.7. ��
Definition 6 For a special face S of a nanojoin N with parameters l,m �= 0, a convex-
to-concave path (cc-path for short) is a set of faces containing the face carrying the
convex edge and all faces in one of the two directions until, but not including, the face
carrying the concave edge. If all these faces are hexagons and have edges in just one
special face, we call the cc-path a simple cc-path.

The graph with the cc-path r removed is the graph induced by the vertices from N
that do not lie in S ∩ r .

Lemmas 6.1 and 6.2 imply that the name path is not misleading. Unless the path
consists of a single face, each face in the path neighbours exactly two other faces in
the path except for the endpoints that only neighbour one.

Lemma 6.9 Let N be a symmetric 5–7 nanojoin with a special face S and a simple
cc-path. By removing this simple cc-path a nanojoin with the same parameters is
obtained.

The degree sequence of the new special face can easily be seen to be the same as
that of the original special face.

Using Lemma 6.9 wemay recursively delete each simple cc-path from a symmetric
5–7 nanojoin.

Definition 7 A symmetric 5–7 nanojoin without simple cc-paths is called a reduced
symmetric 5–7 nanojoin.

We obtain the next Lemma.

Lemma 6.10 If there exists a symmetric 5–7 nanojoin for nanocaps with parameters
(l,m) (l,m �= 0) there also exists a reduced symmetric 5–7 nanojoin with the same
parameters (l,m).

In a reduced symmetric 5–7 nanojoin N with parameters (l,m) (l,m �= 0) there is
no thin path and the heptagon contains a convex edge.

Proof By removing simple cc-paths we obtain a reduced symmetric 5-7 nanojoin with
the same parameters.

If N contains a thin path, this path has a heptagon at one end (Lemma 6.8). Each
special face has one cc-path not containing faces of the thin path, as a concave edge
cannot be in the interior of a thin path (Lemma 6.8). So none of these cc-paths contains
the heptagon and only one can contain the pentagon, which implies that at least one
cc-path is simple, which is a contradiction to the nanojoin being reduced.

So N does not contain a thin path. If the heptagon does not contain a convex edge, at
least one of the convex edges is contained in a hexagon. At this hexagon two cc-paths
start that only share the hexagon. As N does not contain a simple cc-path, one cc-path
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must contain a heptagon and one a pentagon. This implies that the convex edge of the
other special face is also contained in a hexagon and that both cc-paths starting there
are simple, a contradiction to N being reduced. ��

This gives us the following result:

Lemma 6.11 If there exists a symmetric 5–7 nanojoin N for parameters (l,m), there
also exists a symmetric 5–7nanojoin with parameters (l,m) with a heptagon at the
boundary of a special face and if l,m �= 0 the heptagon is at the convex edge.

Proof For l,m �= 0 this is just a reformulation of Lemma 6.10. For l = 0 or m = 0,
Lemma 6.8(ii) implies that N does not have a thin path, so we have one special face
that does not have the pentagon in the boundary and we can remove rings of hexagons
and obtain a smaller nanojoin with the same parameters until one of the special faces
contains a heptagon in the boundary. ��

For our next proof we need the following technical, but easy lemma:

Lemma 6.12 Consider a patch P with two disjoint special faces S1, S2 with S2 being
a special t-face. Assume that there are p pentagons and s heptagons in P and let
t = t (S1) and d = d(S1). Then s − p = t − d.

Proof Let h be the number of hexagons in the patch P, t ′ = t (S2) and d ′ = d(S2).
Let P̄ be the planar graph obtained by inserting a new vertex into the center of S2

and connecting it to all vertices of degree 2 in S2.
The number of faces |F |, edges |E | and vertices |V | of P̄ are given by the formulas

|F | = p + h + s + t ′ + 1,

2|E | = 5p + 6h + 7s + t + d + 3t ′ + d ′ and
3|V | = 2|E | + t − (t ′ − 3).

Using Euler’s Formula and the fact that t ′ = d ′ we obtain s − p = t − d. ��
Definition 8 Let N be a symmetric 5–7 nanojoin with the heptagon at the boundary of
the special face S. Let v be a vertex of degree 3 in the boundary of S and the heptagon.
A maximal path starting at the edge of v that is not contained in S, going alternately
left and right, with the first turn such that the second edge is contained in the heptagon
and containing at most 2 vertices in special faces, is called a 7-cutpath.

Lemma 6.13 Let N be a symmetric 5–7 nanojoin with the heptagon at the boundary
of special face S. A 7-cutpath p starting in one special face ends in the other.

Proof As the path p is maximal, there are two possibilities: either the last vertex is in
the boundary of a special face (so a longer path would contain 3 such vertices), or the
next edge following the alternating pattern would intersect the path.

We will show that only the first possibility can occur and that the last vertex is in a
different special face to the first one.
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Assume first that adding another edge to p would result in revisiting vertex u of p,
and so would create a cycle C . Then C splits N into two components (each containing
C).

If one of the components, P , of N does not contain a special face of N , Lemma 3.2
implies t (P) − d(P) ≥ 5. However, except for u, the degrees of the vertices of the
boundary of P alternate between 2 and 3, and hence t (P) − d(P) ≤ 2.

If each component of N contains one special face of N , we can apply Lemma 6.12.
It implies that the component containing the heptagon has at most as many vertices
with degree 3 in the boundary as with degree 2 (and that only if it also contains the
pentagon). On the other hand, the degree of u is 3 in this component and the degrees
of the other vertices alternate between 2 and 3, with at least one vertex of degree 3
neighbouring u (the one following u in the 7-cutpath). So there are more vertices with
degree 3 than with degree 2—a contradiction.

Finally, assume that the 7-cutpath p has both ends in S. Note that the second vertex
of p can’t be in S, for if it were then the path would contain only 1 edge and so could
not contain two edges of the heptagon. So p splits N into two components and one
of them, say Q, does not contain a special face of N . Both end vertices of p have
degree 2 in Q, and so contribute 2 to t (Q)− d(Q). The other vertices of p contribute
between −1 and 1 to t (Q) − d(Q) and the remaining vertices of the special face of
Q contribute between 0 and 2. Hence t (Q) − d(Q) ≤ 5. Together with Lemma 3.2,
this implies that Q cannot contain the heptagon. However, knowing that Q does not
contain the heptagon implies that p starts with a vertex of degree 3 and that the internal
vertices of p contribute 0 or−1 to t (Q)−d(Q). So t (Q)−d(Q) ≤ 4. This contradicts
Lemma 3.2.

So the 7-cutpath ends in the other special face. ��
In order to prove the next lemma, we will first show how the relative position of

endpoints of a path in the boundaries of special faces can be changed. Figure 5 shows
how hexagons can be added so that the resulting join has the same parameters, but the
endpoint is closer to the concave edge.

When one end of the path is a vertex of a concave edge, the nanojoin and the path
can be extended so that the endpoint of the path switches from the m-part to the l-part
of a special face or vice versa. Again, the parameters of the special face do not change.
When switching from the l-part to the m-part a left turn is added, when changing from
the m-part to the l-part a right turn is added. This is depicted in Fig. 6.

Lemma 6.14 If there is a symmetric 5–7 nanojoin for parameters (l,m), there is also
a symmetric 5–7 nanojoin for parameters (l,m) with a legal cutpath.

Fig. 5 Adding hexagons to a special face so that the resulting nanojoin has the same parameters and the
path reaches the boundary closer to the concave edge
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clockwise direction

(b)

(a) l−part m−part

m−part l−part

Fig. 6 Switching one end of a path from the l-part to the m-part and the other way around

Fig. 7 The path p0 starting at
the heptagon (m = 0) and the
two paths p0, p1 starting at the
heptagon (m �= 0)

p
0 p

1
p

0
p

m=0 l,m=0

(a) (b)

Proof We will construct a legal cutpath, that is, a path having properties (i), (ii) and
(iii) from Definition 4. It will be obvious from the path we start with (alternating left
and right) and the operations applied that the resulting path and all intermediate paths
have property (iii).

With r(p), respectively l(p) we denote the number of right, respectively left turns
of a path p as we traverse p from a chosen start point to a chosen end point.

If there is a symmetric 5–7 nanojoin, due to Lemmas 6.11 and 6.13 there is also
one with a heptagon in the boundary and if m �= 0, at the convex edge. There are
7-cutpaths p0 and p1 starting at this heptagon. Interpreting these paths as starting at
the heptagon, we choose the indices so that for p0 the first turn of is to the left therefore
r(p0) + 1 ≥ l(p0) ≥ r(p0) and l(p1) + 1 ≥ r(p1) ≥ l(p1).

When m = 0 the path p0 is already a legal cutpath if r(p0) = l(p0). If r(p0) =
l(p0)−1, we can modify the path as shown in Fig. 7a and obtain a path with one more
right turn, so that the modified path is a legal cutpath.

So assume now that m �= 0.
If r(p0) = l(p0) or r(p1) = l(p1), we have found our legal cutpath, possibly after

exchanging the two first edges of p0 and p1, which doesn’t change the number of left
and right turns, but which does change the part in which the path starts.
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Fig. 8 The case where neither
p0 nor p1 can be made a legal
cutpath

0p p1

lm

lm

So assume r(p0) = l(p0)−1 and r(p1)−1 = l(p1). If p0 ends in the m-part of the
other boundary, we can extend the nanojoin and the path at the other end by repeatedly
applying the construction shown in Fig. 5 and then applying the construction of Fig. 6.
The path then ends in the l-part and has one more right turn. Exchanging the first two
edges with p1 we get a legal cutpath. Analogously, we can construct a legal cutpath
in the case where p1 ends in the l-part.

The last case is that p0 ends after a last left turn in the l-part of the other boundary and
p1 ends after a last right turn in them-part of the other boundary. Note that there can be
no second intersection of p0 and p1 as the segments connecting the two intersections
would determine a patch G in the interior with 3 ≤ t (G) − d(G) ≤ 4. Depending on
whether the other special face is part of G, this contradicts Lemmas 3.2 or 6.12.

This situation is, up to additional pairs of right and left turns in the paths or the sec-
ond special face, depicted in Fig. 8. Together with a segment of the other special face,
the parts of the path after the intersectionwould bound a patch P with t (P)−d(P) = 3,
which is not possible with at most 1 pentagon and all the rest hexagons (Lemma 3.2).
So this last situation is not possible and there is always a legal cutpath. ��

Lemma 6.14 together with Theorem 6.4 now gives

Theorem 6.15 There is no symmetric 5–7 nanojoin.

We did not discuss equivalence or isomorphism of nanojoins in this article, but as
adding one or more hexagons to a nanojoin does not produce a structurally new join,
it is natural to define two joins as isomorphic if the infinite graphs obtained by gluing
halftubes to the special faces are isomorphic as embedded graphs. With this definition
the proofs of Lemma 4.3 and Theorem 5.1 can be slightly modified to show that there
are infinitely many nonisomorphic nanojoins with the given properties. For the proof
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of Lemma 4.2 this is not the case and we conjecture that for 1 pentagon and 1 heptagon
the nanojoins are unique:

Conjecture 6.16 If (a, b) �= (c, d) and a + b ≥ 2, c + d ≥ 2, there is up to isomor-
phism exactly one nanojoin with p = s = 1 joining two halftubes with parameters
(a, b) and (c, d).
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